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I n  this paper we present a theoretical model which permits the conservation 
equations of fluid dynamics to be conditioned in a fashion analogous to the 
experimentalist’s technique of ‘ conditioned sampling ’. The detailed analysis 
refers to the best-known sampling condition, outer-edge intermittency; but 
the model equation may be applicable to other flow situations, wherein condition- 
ing exposes details of the physical phenomena. The analysis results in predic- 
tions of the flow variables within the turbulent flow and of the intermittency. 
Comparison is made with two sets of experimental results for the two-dimensional 
mixing layer and with a boundary layer. 

1. Introduction 
This study is motivated by the existing differences between the techniques 

used daily by the research worker conducting experiments in turbulent shear 
flows, and by the theoretician developing predictive methods for such flows. 
The former recognizes from his experiencein the laboratory or in the field that 
the usual, textbook representation of a turbulent signal as a more-or-less 
continuous (i.e. unstructured) random variable overlooks essential, physically 
illuminating features of many turbulent flows. This leads the experimentalist 
to develop and to employ a variety of so-called conditioned sampling techniques 
(cf. Kovasznay, Kibens & Blackwelder 1970; Kaplan & Laufer 1968; Coles & 
Van Atta 1966; Corrsin & Kistler 1955), so that parts, perhaps small parts, of an 
extended turbulent signal can be statistically analysed without the obfuscation 
of long time periods devoid of interest. These techniques supplement the usual 
(unconditioned) time averages with zone averages, point averages, range-con- 
ditioned zone averages, etc.) and are recognized as providing important informa- 
tion on the physics of turbulent shear flows. 

The theoretician developing predictive methods for turbulent shear flows 
continues to use averaging techniques which overlook developments in the 
laboratory and in the field.? The well-known method of Reynolds decomposition, 
and of time-averaging the describing equations of fluid dynamics, corresponds to 
the unconditioned analysis of the experimentalist. Thus, for example, near the 

t This situation has led Kovasznay to observe that the turbulence community consists 
of experimentalists who do not want to know about predictions and predictors who do not 
want to know about turbulence. 
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outer edge of a turbulent shear flow with an interface between the turbulent 
fluid and the irrotational fluid, the theoretician implicitly overlooks the distinc- 
tion between the two fluids, and so loses details of the structure in the outer 
portions of the flow. This conservative, traditional position of the theoretician 
can be justified if interest is confined to providing the means for estimating 
quantities such as mean shear, mean heat transfer, ebc. For this purpose it is 
apparently unnecessary to incorporate in a detailed way the existence of the 
turbulent interface. However, there may be other problems, connected with 
turbulent mean flows, requiring more detailed behaviour of the outer regions of 
turbulent flows and more of the physics of the turbulence. The newer, so-called 
second-order closure methods, which incorporate more of the physics of turbu- 
lence into the describing equations, generally provide more accurate descriptions 
of turbulent shear flows. Likewise, we might expect that analyses which incorpor- 
ate descriptions of the structure of outer portions of the boundary layer, and 
more generally descriptions of possibly rare but physically significant events, 
could be expected to be more accurate and to have wide utility. This expectation 
may be especially valid for scalars that have constant values in the outer flow. 

This situation suggests that the theoretician should have tools of analysis 
analogous to those used by the experimentalist. Here we consider an approach 
to an obvious case calling for conditioned equations: that of the interface between 
turbulent fluid in a shear flow and the irrotational fluid into which it grows. 
The existence of such an interface is well known from the pioneering work of 
Corrsin & Kistler (1955); and it provides the earliest application of conditioned 
statistics in the laboratory. We point out that perhaps the entire range of pheno- 
mena in turbulent shear flows, exposed by conditioned sampling in the laboratory, 
can eventually be described by appropriate extensions of the present point of 
view. In  addition, there may be applications to reacting flows involving oscilla- 
ting flame sheets. We make a modest start here. 

A sensor (e.g. a hot wire giving a signal proportional to the streamwise velo- 
city component) in the outer portions of a turbulent shear flow (e.g. a boundary 
layer) alternately encounters periods in the irrotational, external flow and periods 
within the turbulent flow. Kovasznay et al. (1970) showed that the velocities 
within the irrotational fluid are considerably less uniform than was originally 
believed (cf. Corrsin & Kistler 1955). Nevertheless, that  the signal is significantly 
different in the two parts of the flow is evident qualitatively from observations 
of an oscilloscope or other device displaying the sensor output. In  fact, there 
has been developed a variety of discrimination techniques permitting a random 
telegraph signal (i.e. a signal with one of two values, zero or one) to be generated 
from the output of a variety of sensors: the value zero corresponds t o  the sensor 
being in the irrotational fluid, and the value one to it being in the turbulent fluid. 
With the zero-one signal available, the experimentalist is able t,o perform a 
variety of statistical analyses: e.g. to determine the percentage of time the flow 
is turbulent a t  the sensor and the mean value, the r.m.8. and other moments of 
the sensor output associated with the irrotational fluid alone, with the turbulent 
fluid alone, and with the interfaces, upstream and downstream (i.e. when the 
zero-one signal changes value). 
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It is our purpose here to develop an analysis permitting the usual fluid dy- 
namical equations to be conditioned, so as to provide a description of the Auid 
in  the two regions of a turbulent shear flow. We first outline our approach, and 
develop the general equations describing the mean flow variables within the 
turbulent fluid alone. We then specialize these equations for turbulent shear flows 
sufficiently thin that the boundary-layer approximations apply, then compare 
predictions with experimental data for the two-dimensional mixing layer and 
€or a boundary layer. 

2. General analysis 
In  the course of this analysis we shall need some of the conventional, uncon- 

ditioned equations of turbulent flows. Thus we start by developing briefly, but in 
the usual fashion, well-known equations. Consider the equations for a fluid with 
constant properties in Cartesian co-ordinates and in the usual notation, namely 

To be clear, we define the time-average of a quantity &(x,, x2, x3, t )  as 

and we decompose Q as 

&(xi, ~ 2 ,  ~ 3 ,  t )  = @’(XI, $2, xJ +&‘(xi, ~ 2 ,  ~ 3 ,  t ) .  (4) 

Throughout this analysis there will be only one fluctuating component for each 
fluid dynamical variable (i.e. that indicated by (4)).t  Employing these conven- 
tional definitions and neglecting viscous transport, we have the following well- 
known equations, frequently used by theoreticians in the description of turbulent 
shear flows: 

- a i ap 
-(E,Gi+u;ui) = ---, i = 1, 2, 3, 
axk P ’xi 

a -- - auj - au$ 
- (u,u;u; + u;u;u;c) + (u;u;) - + (u’.u’) - 

ax, 3 k ax, 

f It will be seen shortly that other kinds of mean quantities appear, and thus that other 
fluctuating quantities suggest themselves. There appears to be little to be gained from 
considering them in the present context. 

18-2 
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The conditioning function 

Suppose we wish to supplement the averaging defined by (3) by one analogous 
to that which the experimentalist uses to distinguish time intervals when his 
sensor is in irrotational fluid from those when it is in turbulent fluid. Clearly 
a suitable zero-one function is needed. To develop an equation for such a function, 
we adopted the viewpoint of Nee & Kovasznay (1969), Saffman (1970) and 
others, and postulate a model equation. I n  our case we can construct a flow 
situation in which the model equation would describe an identifiable physical 
variable.? Nevertheless, the viewpoint of a model equation appears the appro- 
priate one. Accordingly, consider a diffusion equation for a scalar quantity 

21 a 
- + - ( U k ) I )  = w, 
at ax, 

with a creation term w, the volumet,ric rate of creation of the scalar I with units 
of cm3/cm3s. 

Equation (6) can be used in conjunction with (1) and (2) to develop the well- 
known equations for the conservation of the mean values, fluxes, intensities, and 
velocity correlations of a scalar quantity. However, we now imagine that a t  an 
arbitrary space-time point I equals either zero or one. This view leads to special 
correlations of any dynamic variable Q with I .  Consider 

1 T  
&(XI, ~ 2 ,  ~ 3 ,  t )  ( I ( ~ I ,  ~ 2 ,  ~ 3 ,  ‘1 = lim - Q I d t  (S)I = (S(x1, X 2 ,  ~ 3 ) ) 1 -  (7)  

T+m TS, 

Clearly by the operation implied by (7) ,  we have accumulated contributions 
to Q only when I = 1, and have excluded from the averaging the values of Q 
when I = 0. The resultant mean value is denoted by a subscript one. The only 
ambiguity in this ‘conditioned’ mean value of Q is due to ‘interfaces’ where 
I changes value. Consistent with the high Reynolds number assumptions used 
in connexion with (la), (2a )  and ( 5 ) ,  and with the assignment of only zero and 
unity values to I ,  these interfaces are considered negligibly small in space; thus 
their repeated passing of the space point (x1,x2,x3) is assumed to contribute 
negligibly to the time averaging in (7) .  In this regard, we are explicit about an 
assnmption taken for granted by the experimentalist when he generates a zero- 
one signal, then uses it to obtain conditioned statistics.$ 

I n  general (Q’)l is not zero although 8’ = 0; and the definition of conditioned 
means, as in (7),  differs by a factor r or (1  -1) from that frequently employed 
by the experimentalist. I n  our definition, mean values corresponding to those 

f Consider a flow involving two fluids. Some of the fluid is distinguished from the rest in a 
fluid-dynamically insignificant manner (e.g. by its colour). Let I(xl, x,, x3, t )  denote tho 
concentration in volumetric percentage of this distinguished or marked fluid. Allow the 
coloured fluid to increase or decrease by some photochemical process. In  this notion (6)  is 
the conservation equation for I with molecular effects neglected. See ‘Note added in proof ’. 

$ For brevity we shall not always indicate the (x1,z2,z3,t) and (z1,x2,xQ) functional 
dependence of our variables. Throughout we are dealing with one-point, one-time averaging, 
and with an Eulerian representation. 
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periods when I = 0 (denoted by the subscript zero) are related to unconditioned 
means, and to means when I = 1, by a relation not involving 1, namely 

(8) Q = ( a ) o  + (a. 
Special cases of (8) are of interest. If Q = 0 in the irrotational flow, as is frequently 
the case with scalar quantities, then Q = (g)l. If a quantity is statistically the 
same within the turbulent and irrotational fluids, then a = (g),/r = (Q),/( I - r).  
I n  general, lim (Q),/r and lim (a),/( 1 - f )  can have any values. Finally, the two- 

valued, zero-unity, nature of I implies that, if 1 = 1, I = 1, g = (&),, &, = 0, 
and that, i f f  = 0,  I = 0,  a = go, (a), = 0. 

Extension of (7 )  and inclusion of a second dynamical variable P leads to the 
following equations, which we shall need subsequently: 

z-+a I-1 

Consist’ent and repeated applications of these rules regarding correlations 
involving our condition function I respect and assure its zero-unity nature, with- 
out the need for explicit specification of I (  1 - I )  = 0. We now move on to further 
statistics following from the availability of I ,  and thence to the equations from 
which I and certain other variables of interest can be developed. 

If we consider a particular point in space, then the times when the value of I 
changes form a sequence, t,, t,, . . . , t,, which leads t o  the point statistics, well 
known to the experimentalist. If weapply to avariabIe &(x,, xz, x3, t )  the averaging 
defined by (3), and consider all interface crossings, we have 

&&(t-t,) = lim TQb(t-t ,)dt  
T+m T L  I 

where X2(xl, x3, t )  is the location of the interface, fI is the crossing frequency, 
and Q is the ensemble average of Q a t  interface crossings. The averaging in (10) 
can be split into a sequence of ‘downstream ’ crossing times when I goes from zero 
to one and a sequence of an equal number of ‘upstream’ crossing times when I 
goes from one to zero?. We show this schematically in figure 1.  

Although a slight digression, it seems reasonable a t  this point to establish 
an important consequence of (6) and of the averaging discussed here. The mean 
of (6) becomes an equation for the conditioned veIocity components : 

a - a -  
- (Uk), = w = - 

The conditioned velocity components are not divergence-free. 

1- Because it seems less ambiguous, we prefer the identification of ‘upstream’ and ‘down- 
stream ’ crossings to the frequently employed ‘backs ’ and ‘fronts ’, respectively. Upstream 
crossings correspond to - 8(t - t,) -+ 00, downstream ones to 8(t - t , )  + CO. 
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- u  

FIGURE 1. Schematic representation of an intermittent flow, and of the u1 
velocity component and its discrimination. 

To relate our conditioning function I(x1,x2,x3,t) to  the case of outer-edge 
intermittency requires specification of the nature of w and of the distinction 
between the fluid identified with I = 1 and t’hat with I = 0. In  analyses of other 
types of conditioning as performed by the experimentalist, other descriptions 
of w and other identifications will be required. Since here the value I = 1 will 
identify turbulent fluid, and since the amount of turbulent fluid increases by 
an entrainment mechanism associated with the interface between the two fluids, 
the volumetric rate of creation associated with the w term in (6) is due to 
passages of the interface through the particular space point (x1,x2, x3) being 
considered (i.e. w is non-zero only when I changes value). In  terms of a sharp 
interface, this view suggests that w should be thought of as a train of pulses 
each contributing a positive increment of turbulent fluid, and therefore as a 
generalized function. Whether entrainment is due to molecular processes a t  the 
interface or to engulfment is unimportant in this context. However, this picture of 
the creation implies that, when r = 0, l  (i.e. when there are no interface crossings), 
UI z 0. This behaviour will be used repeatedly below, when limiting cases corres- 
ponding to I = 0 , l  are considered. 

The physical implications of the nature of w set out, we postpone the pheno- 
menology of w, and consider the identification of the conditioning function with 
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turbulence. Although there may be other ways of doing so, our starting point is 
the equations of Corrsin & Kistler (1955) for the Reynolds stresses in irrotational 
flow. They show that, in such a flow, 

a -  i a -  
-(u!u')---(u;u;) = 0,  i = 1 , 2 , 3 .  
ax, a 2axi 

Jn a two-dimensional flow in the xl, x2 plane, (12) with i = 2 implies that, if the 
kinetic energy of fluctuations uLu; dies as x$ + co, then u;uL approaches a con- 
stant value (presumably zero) as x$ + 00. This is the behaviour we want when 
I = 0. Thus consider 

- - 

whose first factor is zero in the turbulence, and whose last factor is zero in the 
irrotational flow. The mean of (13) is 

where we have used (11) .  I n  the limiting case of I = 1, T = I ,  each term in (14) 
becomes zero, whereas in the other limiting case I = 0, I = 0, (12) is recovered. 
For intermediate values of I (i.e. for spatial locations involving intermittency, 
I + 0, l ) ,  (14) provides an apparently new relation among the Reynolds stresses 
(i.e. u;u;, (utu;),), the turbulent kinetic energies (i.e. u;u,& (uLu;),), and a variety 
of terms, including those of the form u;u; aI/ax,. I n  view of the zero-one nature 
of I ,  the latter are the point statistics of the interface crossings. In  general, 
these terms should be thought of as examples of the averaging defined by 
(1  I) ,  applied separately to the two sequences corresponding to upstream and 
downstream crossings for which - B(t - t,) + co and B(t - t,) -+ 00 respectively. 
Thus, these terms are zero if the quantity multiplying aI/ax, is statistically the 
same a t  the two types of crossings. Clearly, to make (14) useful, some modelling 
is required. 

Some conditioned equations 

Assuming that we have established an approach to a suitable conditioning 
function, we may now use it to develop conditioned flow equations. If ( 2 )  is 
multiplied by I ,  (6) by ui, addition and averaging in the sense of (3) leads (after 
some aIgebra involving use of (4), (7), and (9)) to 

-- -- 

where we employ a high Reynolds number assumption to neglect terms of the 
form v(a2/ax,ax,) We also neglect the terms v(au;/ax,) (aI/ax,), under the 
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assumption that the values of au;/ax, are insufficiently different on upstream and 
downstream interfaces to make these terms significant after multiplication by the 
kineticviscosity. Equation (15) reduces properly in the two limiting cases, j = 0 , l .  

The procedure used to  develop (15) can be extended, e.g. to develop the equa- 
tions for the conditioned Reynolds stresses (u(i u : ) ~ ,  and the conditioned turbulent 
kinetic energy ( u ; ~ ; ) ~ .  The usual procedures of cross-multiplication, addition, 
averaging and rearranging are followed; but in this case (6) must be included. For 
present purposes, we shall not require these additional equations. 

- 
- 

Boundary-layer jlows and modelling 

We now specialize the above equations for boundary-layer flows nearly confined 
to  the xl, x3 plane, and propose forms for the termsrequiring modelling. I n  making 
the boundary-layer approximations, we assume that the flow is fully turbulent 
in the x1,x3 plane, and that the conditioned and unconditioned velocity com- 
ponents must therefore be considered of the same order of magnitude. Thus (12) 
is unaltered, while, if i = 1, (14) leads to  

- 
au, aI aI 3I + (Ti1) - + u zc - + u’ zGr - - 1,: u.’ - 

lax, k a X k  kaxk kax l  
For i = 2, (14) yields 

au 
-[u;;zG;;-(~~~;;)~-~(u;u;-(U~u.;),)]-(u,~-(~ ) ) -l 
ax2 ax2 

- -  a -  - 

If in (14) with i = 3 we make the usual assumptions for two-dimensional layers 
and the assumption of statistical independence of upstream and downstream 
crossings with respect to aI/ax3, we obtain no contribution therefrom. 

Finally, (15) with i = 1 gives 

whereas i = 2 gives 

and i = 3, with some apparently benign assumptions, contributes nothing. 
Application of these equations is simplified if we now make the assumptions 

The first is in accord with experimental data (cf. for example Blackwelder 
& Kovasznay 1972); itimplies that the Reynoldsstressuiu; withintheirrotational 
flow is not only constant but zero. The second implies that the mean pressures 

- 
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within the turbulent and irrotational fluids are the same. The third implies that 
the pressure is statistically identical at upstream and downstream crossings. All 
three appear reasonable. Their consequence is that we may focus on (ll),  (140,) 
and (150,), and on the modelling necessary to close them, and we may consider 
that  (14b) and (15b) relate quantities of subsidiary interest. 

We follow the usual ideas guiding such modelling: as much physical content 
as possible, and dimensional consistency. In  addition, we anticipate the resulting 
form of the final equations for the special case of similar flows, and retain a 
sufficient number of constants associated with the modelled terms that the re- 
quisite boundary conditions can be satisfied. Finally, the asymptotic behaviour 
as xi --f 00 must be taken into account. While following these ideas, we also seek 
simplicity, and so recognize that the modelling employed here may be subject to 
future improvements. 

All of the terms to be modelled involve interface crossings and thus must 
depend on the crossing frequency fi. We take this dependence to be proportional 
to I (  1 - I )  UJA, where A is a length scale of the order of the boundary-layer thick- 
nesst. The creation term in the form w' is expected to play an important role: 
Corrsin & Ristler (1955) suggests that the creation of turbulent fluid should 
depend on the Reynolds stress. Furthermore, dimensional considerations suggest 
w'a ( lulu; I )*. But preliminary results involving comparison with experimental 
data indicate that the creation of turbulent fluid a t  the outer edges of a shear 
layer decays faster than is predicted by the square-root dependence. As we shall 
see, there are other constraints, related to obtaining proper asymptotic behaviour 
a t  such outer edges, so that we are led to 

w' = ( Iu,;uL~/U~),S (1 - I )  ?&/Al. (16) 

A, is a length incorporating a constant into the length scale introduced by the 
frequency. U is a reference velocity. We have assumed that the dimensionless 
quantity multiplying the frequency factor is proportional to I-l, an assumption 
dictated by asymptotic behaviour. 

Next consider the terms involving point statistics at the interfaces. They are 
difficult to estimate, because it is not clear whether the sequence from the up- 
stream, or that from the downstream, crossings dominates. Here we take them to 
be proportional to an appropriate power, 4 or 1, of the mean Reynolds stress with 
the idea that the level of fluctuations of the velocity components is proportional 
to that stress.$ Thus we let 

f Anexaminationofthedata onfrsuggests thatthisdependencecouldaswellbe (I( 1 --I))&. 
Consideration of the behaviour as xi --f co suggests the form chosen here. We could alterna- 
tively follow Rice (1945), in assuming that the interfacia,l position is normally distributed. 
As a consequence, fIa ar/ax,. This alters the nature of the resulting equations so drastically 
that we prefer the present, more conservative approach. 
1 As will be seen, the choice of the exponents of I in (16) and (17) and similar equations 

is dedicated by considerations of solution behaviour as xl + co. 
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A, and A3 are again length scales that are constants times A ,  and that are to  be 
determined. 

Finally, we deal with the %term. We make it a combination of the creation 
term and an appropriate power of the mean shear. The w factor leads to sampling 
of the fluctuations of the u, velocity component a t  both upstream and down- 
stream int,erfaces. These fluctuations are taken to be proportional to  (u;ui)i. 
Thus 

(18) 

- 

- 
zi.~; = ( IU; ) / /U2)g  (1 -1) U1 U/A4. 

A4 is the final length scale introduced by the modelling. 

turbulence we deal with here arc 
With the above assumptions and modelling, the final equations of intermittent 

I a - (ilk), = (lGL)/l U2)$ (1  - f) Ul/Al, 
ax, 

If in these equations ( u k ) l  = 0 when f = 0, they are identically satisfied term 
by term. If ( U k ) ,  = Gk when f = 1,  then the second equation is satisfiedidentically, 
and the first and third become the usual equations for unconditioned turbulent 
flows of the boundary-layer type. 

For a complete formulation of a,n intermittent flow in the present context, 
(19) must be supplemented with equations for the unconditioned velocity cam- 
ponents ill and U,, and for the mean shear stress u;ui (i.e. ( l a )  and (2a)  with 
i = 1 and boundary-layer approximations invoked). The nature of the resulting 
set of equations will be determined by the closure scheme employed for these 
supplemental equations. It seems appropriate for present purposes to take the 
view that the unconditioned flow is known, and that the conditioned variables 
are to be determined from (19). For this purpose (19) can be writt'en formally as 

- 

gi, i = 1 , 2 , 3  are functions of the known quantities, GI, E,, p ,  u;ui, and of the 
dependent quantities, (u,),, 1 in finite form. Standard methods show that 
these are hyperbolic equations with the streamlines as double characteristics 
and lines x1 = constant as single characteristic lines. Along the streamlines, it 
is clear from the above that 
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Consider the appropriate initial and boundary data. We assume for the moment 
that along the x1 axis the flow is fully turbulent. Since the unconditioned flow is 
taken as given, and the flow is taken to be fully turbulent along the x1 axis, 

(xl, 0) and ( U 2 ) 1  (xl, 0) are known and I(xl, 0) = 1. At an initial station 
(e.g. x1 = O), ( U J l  (0, x2)  and I(0, x2)  may be specified. On physical grounds, these 
initial distributions must have an appropriate behaviour relative to the known 
unconditionedflow asx,increases: namely, (0, x2)  < Ul(O, x 2 ) ,  0 < I(0, x2)  < 1 
and lim (0, x 2 ) ,  j ( 0 ,  x 2 )  = 0 (i.e. the initial data must correspond to a turbu- 

lent flow bounded by an irrotational flow on one side, x2 > 0). If a streamline 
passes through a point x1 = 0, x2 sufficiently large that (UJ1 0, then the 
above g2 and g3 functions along that streamline are zero as long as aZl/ax2 z 0, 
indicating that (El)l and I will remain zero until that streamline ‘enters’ the 
boundary layer. Thus specification of boundary data along x 2  = 0 and of 
appropriate initial data at  x1 = 0 assures proper behaviour of (U1)l and I 
at x2 = 0, xz + co for arbitrary x1 > 0. 

The situation regarding (E2)1 is somewhat different. No initial data with respect 
to this conditioned velocity component can be specified. Rather (U2)1 ( 0 , x 2 )  is 
obtained from the initial data on (U1)l and 1. The requirement that 

X,+CC 

4 

lim (U2)1  (xl, x2) = 0 

is considered to impose a constraint on the lengths scales Ai, i = 1, ..., 4 (e.g. 
one of them is related to the others so that this condition is satisfied). 

X2c1”03 

3. Application to the two-dimensional mixing layer 
We now apply the equations developed in $ 2  to a simple turbulent flow. 

We seek a flow which is described by a similarity solution (so that the numerical 
analysis is reduced in complexity), and which has been studied experimentally 
(so that its intermittency and conditioned velocity components are available). 
Such an initial application has the further advantage of providing a means of 
estimating in a largely formal way the length scales A$, i = 1, .. .4, appearing in 
the modelling. Whether these same length scales will apply to more general cases 
of turbulent intermittent flows remains to be determined. 

The two-dimensional, free-mixing layer is similar in terms of the variable 
7 = x2/x1. Moreover, there are available data of Wygnanski & Fiedler (1970) 
and of Spencer & Jones (1971) on the cases of mixing with one stream quiescent, 
and with both moving, respectively. We thus consider application of our analysis 
to two-dimensional free-mixing for which the pressure is constant. The flow is 
shown schematically in figure 2. 
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FIGURE 2. Schematic representation of a two-dimensional mixing layer. 

Unconditioned $ow 
Following the philosophy employed above, we assume that the unconditioned 
velocity components and mean shear stress are known, and we compute the two 
conditioned velocity components and the intermittency. The unconditioned 
flow is described in terms of a stream function f ( 7 )  according to  

f f ”  = T’. (20) 

Primes denote differentiation with respect to 7. The velocity components are 
relat’ed to  f by 

- 
u1 = Uf’, uz = - ( f - r / f ‘ ) .  

- 
Also, T = u;uL/U2, a non-dimensional Reynolds stress. 

Instead of assuming either a model for eddy viscosity or another closure scheme, 
we follow a more direct approach, suitable for present purposes, and assume a 
form for f”(7). Then quadrature gives f ,  f’ and T .  I n  carrying out these quad- 
ratures, we impose the conditions f ( 0 )  = 0 (i.e. we place the origin of x2 at  the 
dividing streamline) and T( f CO) = 0. In  particular, we assume 

(21) 

which involves the two parameters v (the spreading parameter, which is given) 
and yo (which must be determined from t,he conditions on T( k a)). Quadrature 
yields 

f ”  = yv/d exp [ - a2(7 + 7,,)2], 

and (20) gives 
T = - /,a f ’ ( l - f ’ ) d V - f ( l - f ’ ) .  
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If T( - 00) = 0, (23) requires that 7o be selected so that 

285 

0 = ,j-omf.( 1 -f.) d7 +so f ’ (  1 - y - f ’) dv. 
- m  

After some calculation, this leads to 

which determines q,,. 
If we were able to compare predicted and measured characteristics of the u2 

velocity components, we should have to re-interpret our solutions in terms of a 
co-ordinate system whose origin is not on the dividing streamline f = 0. Com- 
parison of the x1 velocity component involves only a translation of 7. 

Equations for conditioned velocities and intermittency 

Introduce two new non-dimensional variables in (1  9 )  : namely, 

Gl = (Ul),/U and 8, = ( i i2)JU.  

Then (1  9 )  in similarity form leads to 

= v’ i i i+Kf ’ ( lT I )$ (1-4) ,  

1, = -(f ’(KITI$-64lTlt)-BT1)(1-I) - r(-(f-?f)f-82) 
f ff’ 

f”r - f’(f’( KI TI d - 611 T I 4) - (@TI + q5 I T 1%) ( 1 - 4)  
f 

a; =f”+-(($I-G,)- 
f 

The four length scales A,, i = 1, . . .4, are replaced by the constants @, 6, K ,  qi 
according to K A ~  = 8A2 = PA, = $A4 = x1 (i.e. similarity requirements necessi- 
tate that the length scales increase linearly with the x1 co-ordinate). Negative 
values of p,8, K and $ are not prohibited, but would simply imply that appropri- 
ate negative signs should have been introduced in the modelling (16)-( 18).  
On physical grounds, we expect K > 0,  since it relates to the increase in turbulent 
fluid a t  the interfaces; but hhe remaining constants arise from point statistics at 
the interfaces, and are therefore ambiguous, even as to sign. 

Three-point boundary conditions are to be applied to (25) .  At 7 = 0, we take 
the flow to be fully turbulent, so that 

Gl(0) = f‘(0)) G2(0) = 0, I (0)  = 1. (26) 

Gl( +a) = G2( kco) = 4( 20O) = 0.  (27 )  

At 7 -+ 2 ~3 the flow is fully irrotational, so that 

In  this formulation, we do not allow for intermittency a t  the dividing streamline. 
Experimental data show that 0.95 5 f(0) 5 0.99; so for present purposes we 
feel justified in making this assumption. However, an alternative formulation 
would involve specifying only (27), and altering the modelling and/or the 
strategy of solution, so that the solutions of (25 )  would go smoothly through the 
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origin, where f = 0.7 Here we effectively divide the mixing layer into two separate 
intermittent flows, one for q > 0,  the other for 7 < 0, and permit separate length 
scales (i.e. separate constantsp, 6, K and 4 for each). We rationalize this by noting 
that the two interface surfaces are different on the two sides of the mixing layer, 
so that the entrainment mechanism and the various point statistics are expected 
to be different on the two sides. 

This point of view also has the advantage that the resulting constants may be 
interpreted as loosely applying to special boundary-layer flows growing linearly 
with xl, with a constant slip velocity at  the wall. For q > 0 the velocity profiles 
would be conventional, in that the slip velocity is less than U (i.e. 0 < f (0)  < 1). 
For q < 0 the solutions would have to be interpreted as applying to the case ofa 
boundary layer over a moving wall. 

If the boundary conditions at  q -+ 5 co are dropped, a solution of (25) for any 
values of p, 6, K and q5 is I = 1,Q,  = f ‘, 4, = - (f-qf’) (i.e. the conditioned and 
unconditioned flow variables are identical if the flow is fully turbulent). This 
implies that special attention must be devoted to the behaviour near the origin 
for solutions that do satisfy the boundary conditions a t  q -+ 00. In fact, the 
behaviour a t  the origin and as q2 --f 00 is important in deciding on the strategy to 
be followed in finding the solutions. Accordingly, we consider these two limiting 
situations. Suppose that, near q = 0,  we assume 

f E f ’ (0 )  7 + +f”(O) q 2 + .  . ., Q, 2: f (0)  +f”(O) r] + *43(0) q 2 +  .. ., 
.ii, N $f”(O)?p+ ... , 4 21 1++4”(0)’12+ ... . 1 (28) 

Then substitution into (25) leads to the following results. If p, 6 and K are con- 
strained so that 

> (29) 
f ’ (0 )  (KIT(0)(9-61T(O)IB)-PT(O) 

2.f ’(0) 
l =  

then j”(0)  may be arbitrarily specified, and 

g ( 0 )  = (f’(0) +$$)T(Op)P(O) .  ( 3 0 )  

Imposition of I”(0) < 0 forces the solutions away from the uninteresting ones 
corresponding to the unconditioned flow. 

Consider next the behaviour a t  q + 00. The unconditioned flow becomes 

f “ q - a ,  f’E 1. 

Thus from ( 2 3 )  provided a(7 +qo) 1, we obtain the approximation 

-T 2i - e ~ p [ - a ~ ( q + ~ ~ ) ~ ]  Y [ 1 - ’ 5 + 0 (  1 )]. (31) 

2 7 l b  a2(r + 9Ol2 

Now, in (25) as q + co, the \TI% terms dominate, and we obtain 

t As we shall see, the present equations involve (1  - f)/fcc 7 as 7 + 0. If I (0 )  + 1, a con. 
straint on the constants p, 8, K and $, similar to (29), will prevail. 
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With (31) employed in (32), we obtain analytic solutions satisfying the boundary 
conditions at  7 -+ m, subject to the inequality on a(7 +yo);  namely, 

Several reinarks about (33) are indicated. If K is specified, then (33) provide 
the starting values for an inward integration at  an appropriately large value of 7. 
The quotients (Gl/j)  and ( G 2 / f )  represent the mean values of the conditioned 
velocities within the turbulence alone. We see that, as 7 -+ m, these quotients 
approach unity and a, respectively, indicating that the turbulent fluid takes on 
the velocity of the external fluid. As suggested earlier, our modelling has been 
guided by the apparent desirability of this behaviour. It is reasonably easy to 
construct models that lead to ( G I / I )  = 0,  00, and that we consider unacceptable. 
Making zcc (u;ui/I)4 is such a model. 

The experimental data on the asymptotic behaviour of (Gl/l) are somewhat 
ambiguous, indicating a value of unity or a value somewhat less than unity. 
The corresponding data on the behaviour of (G2 /1 )  are scarce. But Kovasznay 
et al. (1970) show that ( G 2 / f )  - (Uz/U) does not approach zero at  the outer edge 
of a turbulent boundary layer. We are unable to adjust our modelling to achieve 
such behaviour. We therefore proceed with the physically reasonable behaviour 
given by (31). 

For 7 --f - m a similar analysis applies, provided y > 1. The unconditioned 
flow behaves as 

Equation (31) is modified but we find 

- -  

f 2i (l-y)v-a, f ' E  1 -y .  

G1=(f--y)f,  G,=al. 

I is given by (33) multiplied by (1 - y).  The two a quantities €or 9 -+ k co are 
different and obtained from the unconditioned flow. The case y = 1 requires 
special treatment, which does not appear warranted. We thus confine ourselves 
to describing the high-speed side of layers mixing with quiescent fluid, and layers 
withy > 1 .  

On the basis of the end-point analyses given here, a strategy for obtaining solu- 
tions is indicated. Consider the situation for 7 > 0. We specify I"(0) so as to 
achieve agreement between prediction and experimental data, and perform 
two integrations. We carry out an inward integration from a suitably large value 
of 7, so that the asymptotic solutions given by (33) apply. We carry out an 
outward integration, starting from the origin, employing (28)-(31). At an inter- 
mediate value of 7, the values of the three, unconstrained constants among /3, 
6, K and @ are selected so that continuity in Gl, G, and I is achieved. A similar 
technique applies to the other half-plane 7 < 0.7 

Consider first the high-speed side of a mixing layer with quiescent fluid on the 
low-speed side: y = 1. To facilitate comparison with the data for this flow from 

7 The actual numerical effort required to exploit this strategy turns out to be non-trivial, 
and several methods failed to converge. However, quasi-linearization, based on treating p, 
K and as parameters with the related 6 of (29), is found t o  be reasonably efficient. 
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FIGURE 3. The distributions of the velocity components and of intermittency in a free- 
mixing layer, y N 1 : - 6 - , n ,p ;  ~, I ;  -.-.-.- , GI; -*-, G2 x lo2; I, experimental data 
on 1 from Wygnanski & Fiedler (1970). 

- 

' T Y  P 6 K $ I"( 0 )  r e  

9.0 1.0 71 > 0 -7.878 -2.295 41.78 53'76 - 150 0.16 
20.4 0.7 7 > 0 -118 -8.639 106.4 163.1 -500 0.070 

619 86.05 144.8 -320.6 -500 - 
77.0 - 7 > O  -1197 -29.18 711.5 1604 - 0.017 

V > O  - -  

TABLE 1.  Parameters identifying the unconditioned flows and the solution 
parameters for the conditioned flow variables 

Wygnanski & Fiedler (1970), we take r = 9. Figure 3 shows the predicted dis- 
tributions of El,  U, and 1 along with the experimental data for on both sides 
of the flow. The values of the parameters obtained for this case are given in table 1. 
Agreement between prediction and experiment is reasonably good in the inner 
portions of the flow where the intermittency is high; but the predicted decay to 
the external flow is slower than indicated by the data. This behaviour will be 
found in all of the cases considered here, suggesting some changes in the model- 
ling. 

We can make additional comparisons of prediction and experiment. Consider 
the conditioned streamwise velocity component. I n  general the differences 
among the three values of the u1 velocity component, Gl, ( E J 1  and are so 
small that the slight differences between the assumed and experimental uncon- 
ditioned velocity profile are significant for this comparison. Accordingly, we 
present in figure 4 the differences between these components. The comparison is 
seen to be reasonably good, again except near the outer edge, where the pre- 
viously mentioned slow decay of the predicted intermittency leads to a slower 
decay of the velocity difference between the turbulent and the external fluid. 
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FIGURE 4. Distribution of zone averages of streamwise velocity component in a free-mixing 
layer, y = i :  - , ( ( E J U )  - G,)/(I -2)  - ( z , /U) ;  ---, ( ~ , / 1 )  - (u,/U); 0 ,  0, experi- 
mental data on 2 from Wygnanski & Fiedler (1970). 

We cannot make an absolute prediction of the crossing frequency, since it 
appears only as part of the various modelled terms. But we can compute the 
distribution of the crossing frequency normalized with respect to its maximum 
value, and compare this distribution with data, as shown in figure 5 .  It will be 
seen that, because the intermittency is between 0.95 and unity on the axis in the 
experiments of Wygnanski & Fiedler, the computed distribution is in error near 
the axis. Near the outer edge good agreement is obtained. 

Similar results are found for the mixing layer studied by Spencer & Jones 
(1971) for y = 0.7, v = 20.4. Figure 6 gives the predicted distributions of iil,ii2 
and 7, on both sides of the layer, along with the intermittency data. The values of 
the parameters obtained from the analysis are also given in table 1.  Again the 
agreement between prediction and experiment with respect to the intermittency 
is quite good in the middle part of the flow, but the predicted approach to  the 
external flows is slower than the data indicate. 

Spencer & Jones did not give any data on crossing frequency; but we are able 
in figure 7 to compare our results in terms of the several u1 velocity components. 
Again to remove the small differences between the assumed and measured un- 
conditioned velocities, we present the comparison in terms of differences. Except 
for the more rapid approach of the data to the free-stream values near the outer 
edges of the layer, the agreement is satisfactory. 

At this stage in the development of the analysis, there appears little point in 
comparison with additional data on the mixing layer. We have in fact performed 
the numerical analysis of the second case of Spencer & Jones, c = 50-4, y = 0.4, 
with results such as are shown here. 

F L M  68 19 
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FIGURE 5 .  Distribution of normalized crossing frequency . f ~ / ( , f ~ ) ~ ~ ~  on the high velocity side 
of a free-mixing layer, y 2: 1: __ , prediction; a, experimental data from Wygnanslci & 
Fiedler (1970). 

FIGURE 6. The distributions of the vclocity components and of intermittency in a free- 
mixinglayer,y = 0-7: --.--,Ul/U; -,I;-.-.---, ul; -*--, G, x lo2; A, 0, experimental 
data on f from Spencer & Jones (1971). 

- - 
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-0.1 - 0-05 0 

FIGURE 7. The distributions of zone averages of the streamwise velocity components in a 
free-mixinglayer,y = 0.7: -, ( ( E l / U ) - C l ) / ( l - ~ )  - ( U J U ) ; - - - -  9 ( G 1 / 7 ) - ( E J U ) .  

4. Application to a simulated boundary layer 
The analysis for the mixing layer does not strictly apply to  a boundary layer 

with its nonlinear growth. However, it is possible to adjust the parameters appear- 
ing in the assumed unconditioned flow so as to simulate a boundary layer, in 
order to  permit comparison with the measurements of Kovasznay et a$. (1970) 
without redoing the entire analysis. Accordingly, we select CT, y and v0 in (21) 
so that our unconditioned flow reasonably approximates the flow conditions of 
their experiment. I n  particular, we match their shearing velocity a t  the wall and 
the slip velocity a t  the wall (T(0) = - 0.00207, f'(0) = 0.4). I n  addition, we adjust 
the growth of the layer to approximate that which existed locally in their experi- 
ment. We find that CT = 77 ,  y = 3, ?lo = 0.0077. 

To achieve agreement for the intermittency, we also modify slightly the 
strategy indicated above for the mixing layers, as follows. We set I"(0)  = 0,  
and adjust the intermediate point at which the two solutions obtained by 
inward and outward integrations are made continuous. I n  this case, the second 
solution is simply given by the unconditioned flow with 

The results of this computation are shown in figure 8, along with the various 
sets of data for intermittency given by Kovasznay et al., depending on the par- 
ticular experiment performed.? The values of the parameters we obtain are given 
in table 1.  We present our results in terms of x2/6, where 6 is defined by the va.lue 
of x2 corresponding to f = 0.99, the definition used by Kovasznay et al. Again 
it will be seen that the agreement over the inner portions of the flow is reasonably 
good, but that  the approach to  the external stream is somewhat slower than the 
data would suggest. 

I n  this case, the agreement between our assumed unconditioiied velocity profile 
and the experimental one is sufficiently good that we can make the comparison 
of the several streamwise velocities directly, as shown in figure 9. Generally, the 
agreement is quite satisfactory. We have attempted a similar comparison for the 

t They use analog techniques. 

= 1. 
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FIGURE 8. The distributions of the velocity components and of the intermittency in a 
simulated boundary layer: -.-, GJU; ---, 1; ---, GI; -*-, Ca x lo2; n,o, A, experi- 
mental data on 7 from Kovasznay et al. (1970). 
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FIGURE 9. Distribution of zone averages of streamwise velocity components in a simulated 
boundary layer: -. -, uJU;  -.-.-., liil/I; -*-, ( G l - i i l )  (1 -1); 0, experimental data 
from Kovasznay et al. (1970). 
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FIGURE 10. Distribution of normalized crossing frequencyf~/(fI),,, in a simulated boundary 

layer: -, prediction; 0, experimental data from Kovasznay et al. (1970). 

U 2  velocity components by computing the normal velocities in the turbulent 
fluid and in the external fluid relative to the unconditioned normal velocities. 
This corresponds t o  the presentation by Kovasznay et al. as necessitated by the 
small magnitude of the mean normal velocity component. I n  some sense, our 
results are in qualitative agreement with experiment. We find, for example, that 
the turbulent fluid is moving outward from the wall with respect to the uncon- 
ditioned flow, and that therefore the external fluid is moving inward. However, 
the magnitudes of these differences are a decade smaller than the values shown by 
Kovasznay et al. In addition, of course, as we have discussed earlier, our analysis 
results in these differences vanishing as the intermittency vanishes. 

In  figure 10 we compare the predicted distribution of the crossing frequency, 
normalized with respect to this maximum value, with the corresponding data of 
Kovasznay et al. In  this case, the distribution in the inner portions of the bound- 
ary layer is reasonably well represented, whereas in the outer portions the pre- 
dicted crossing frequency is considerably higher than measured. 

Finally, to obtain some insight into their relative importance, the distributions 
of the various modelled terms have been considered. It is found that, as suggested 
earlier, the creation term is dominant, the others being considerably smaller. 
This indicates that improvements in the agreement between prediction and ex- 
periment should be first sought in terms of improved models for the creation 
term. 

It will be recalled that one of the advantages of testing similarity solutions 
is that values for the various length scales appearing in the modelling are ob- 
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tained as part ofthe solutions. It is then appropriate to  consider the values given 
in table 1 in this manner. We show in table 1 the ‘ edge’ of the high-speed side of the 
mixing layer, and the ‘edge’ of the simulated boundary layer, in terms of ye, 
defined as the value of 71 for which f ’  = 0.99. The thickness of the layer can be 
estimated as 6 = rexl. If the various lengths Ai introduced into the modelling 
are fixed multiples of a,, then by,, arc, K T ~ ,  #re should be the same for each of our 
cases. These multiples can, of course, depend on other parameters of the flow. 
In  fact, using the results of an additional free-mixing case not presented in detail, 
we find, within a factor of three and generally well within the range implied 
thereby, that 

/%lc/T(O)/ 21 -0.05, 6qe(\T(0)I)a N -0.04, ~r,(lT(O)/)g E 0.2, 

4r,(IT(O)IP N 1. 

These estimates can be used as first approximations in calculations of other 
similar and non-similar flows. 

With respect to the signs of the various parameters, i t  is encouraging that 
they are all consistent, in the sense that K > 0, /i’ < 0, 6 < 0 and 4 > 0 €or all 
7 > 0. Relative to  the sign of 6 i t  is interesting to note that this term arises from 
the modelling of the point statistic uiaI/ax,. From Antonia (1972) we conclude 
that, for 71 > 0, the greatest contribution to this term probably arises from 
u;aI/ax,, since u;aI/ax, appears to be small, ui being the same a t  the upstream 
and downstream crossings. But, because of the large-scale turbulent structures, 
u6 tends to be negative a t  downstream crossings for which aI/ax, + 00, and to 
be positive at  upstream crossings for which aI/ax, + - 00. Thus, we expect 

for 7 > 0. The opposite would be expected for 7 < 0. Clearly our results support 
these expectations. It does not appear possible to make similar remarks for the 
terms involving /3 and 4. 

5. Concluding remarks 
We have carried out an analysis of intermittent turbulent flow by developing 

a model equation which describes the turbulent fluid. Under the assumption 
that the unconditioned flow is known, the analysis permits the properties of the 
conditioned mean velocities (i.e. the mean values either within the turbulent 
fluid alone or within the external, irrotational fluid) and of the intermittency to  
be predicted. We compared predicted and experimental quantities for two 
mixing layers and for a simulated boundary layer. I n  many respects the agree- 
ment is quite satisfactory, but the need for further study of the several modelled 
terms, in particular that describing the creation of new turbulent fluid, is 
suggested by the predicted slower decay of the intermittency as the external 
flow is approached. 

I n  addition to further refinements and developments of this analysis as i t  re- 
lates to the prediction of the conditioned flow behaviour when the unconditioned 
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flow is assumed known (in particular for additional similar and for non-similar 
flows), i t  would appear highly desirable to consider the simultaneous treatment of 
the unconditioned and conditioned flows. This might be most worthwhile in 
connexion with the phenomenology of scalars. 

This research was carried out in part while the author was a Guggenheim 
Fellow in the Department of Aeronautics of the Imperial College of Science and 
Technology during the 1972-1973 academic year. The support of the John 
Simon Guggenheim Foundation is gratefully acknowledged. The author is 
pleased to acknowledge helpful discussions with Mr Peter Bradshaw and Dr 
William Bush. The author also notes with gratitude that Dr Frank Lane several 
years ago exposed him to the idea of a conservation equation for intermittency. 

Note  udded in proof. After this manuscript had been accepted, Professor 
M. Morkovin questioned whether conditioning the continuity equation ( I )  
would lead to an inconsistency among the resulting equations (6) and (11) .  
The ensuing discussion resulted in the following illuminating considerations. 
If (1)  is multiplied by I and the product averaged, we find simply 

where u , ~  is the instantaneous velocity component normal to xhe interface. We 
thus see that, at a fixed point in space, the mean rate of production of turbulent 
fluid is directly related to the statistical difference in the normal velocity com- 
ponent a t  upstream and downstream interface crossings. If u, is decomposed 
into the velocity of the interface and the velocity relative to the interface and if 
the former contribution is statistically the same a t  upstream and downstream 
crossings, the equantity u,aI/i?n is equal to the average entrainment rate a t  
both types of crossings. This strongly supports and clarifies our earlier ideas 
relative to and furthermore suggests that the point of view that (6) is a model 
equation can well be replaced by the more positive view that (6) is an equation 
for the conservation of turbulent fluid. The author is grateful to Professor 
Morkovin for his stimulating question in particular and for his interest in t>his 
work in general. 
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